from BPTK_Py import Modelfrom BPTK_Py import sd_functions as sdmodel = Model(starttime=1.0,stoptime=60.0, dt=1.0, name="Customer Acquisition SDDSL")# stockscustomers = model.stock("customers")potential_customers = model.stock("potential_customers")#flowscustomer_acquisition=model.flow("customer_acquisition")#convertersacquisition_through_advertising = model.converter("acquisition_through_advertising")acquisition_through_word_of_mouth = model.converter("acquisition_through_word_of_mouth")consumers_reached_through_advertising = model.converter("consumers_reached_through_advertising")consumers_reached_through_word_of_mouth= model.converter("consumers_reached_through_word_of_mouth")market_saturation = model.converter("market_saturation")#constantsinitial_customers = model.constant("initial_customers")initial_potential_customers = model.constant("initial_potential_customers")advertising_success = model.constant("advertising_success")consumers_reached_per_euro = model.constant("consumers_reached_per_ruro")advertising_budget = model.constant("advertising_budget")word_of_mouth_success = model.constant("word_of_mouth_success")contact_rate = model.constant("contact_rate")
#equationscustomers.equation = customer_acquisitionpotential_customers.equation = -customer_acquisitioncustomer_acquisition.equation=sd.min(potential_customers,acquisition_through_advertising+acquisition_through_word_of_mouth)acquisition_through_advertising.equation = advertising_success*consumers_reached_through_advertisingconsumers_reached_through_advertising.equation = consumers_reached_per_euro*advertising_budget*(1-market_saturation)market_saturation.equation = customers/(customers+potential_customers)acquisition_through_word_of_mouth.equation = word_of_mouth_success*consumers_reached_through_word_of_mouthconsumers_reached_through_word_of_mouth.equation=contact_rate*customers*(1-market_saturation)
#initialize modelcustomers.initial_value=initial_customerspotential_customers.initial_value=initial_potential_customersinitial_customers.equation = 0.0initial_potential_customers.equation = 60000.0advertising_success.equation = 0.1consumers_reached_per_euro.equation = 100.0advertising_budget.equation = 100.0word_of_mouth_success.equation = 0.01contact_rate.equation = 10.0
customers.plot()
customers.plot(return_df=True)[1:10]
For debugging purposes it can be useful to take a look at the internat representation of the model equations - these are stored as Python lambda functions.<div><style scoped>.dataframe tbody tr th:only-of-type {vertical-align: middle;}.dataframe tbody tr th {vertical-align: top;}.dataframe thead th {text-align: right;}</style><table border="1" class="dataframe"><thead><tr style="text-align: right;"><th></th><th>customers</th></tr></thead><tbody><tr><th>1.0</th><td>0.000000</td></tr><tr><th>2.0</th><td>1000.000000</td></tr><tr><th>3.0</th><td>2081.666667</td></tr><tr><th>4.0</th><td>3247.916662</td></tr><tr><th>5.0</th><td>4500.994779</td></tr><tr><th>6.0</th><td>5842.312754</td></tr><tr><th>7.0</th><td>7272.284453</td></tr><tr><th>8.0</th><td>8790.164623</td></tr><tr><th>9.0</th><td>10393.900018</td></tr><tr><th>10.0</th><td>12080.003090</td></tr></tbody></table></div>
customers.function_string
if"lambda model, t : ( (model.memoize('initial_customers',t))
(t <= model.starttime) else (model.memoize('customers',t-model.dt))+ model.dt*(model.memoize('customer_acquisition',t-model.dt)) )"
customer_acquisition.function_string"lambda model, t : max( 0,min( model.memoize('potential_customers',t), model.memoize('acquisition_through_advertising',t)+model.memoize('acquisition_through_word_of_mouth',t)))"
/ folder. The BPTK_Py framework will automatically scan this folder and load the scenarios ‚ including the underlying simulation models - into memory.scenarios
scenario_manager={"sddsl_customer_acquisition":{"model":model,"base_constants":{"initial_customers" : 0.0,"initial_potential_customers" : 60000.0,"advertising_success": 0.1,"consumers_reached_per_euro" : 100.0,"advertising_budget" : 100.0,"word_of_mouth_success": 0.01,"contact_rate" : 10.0}}}
A convenient feature of scenarios is that you only have to define variables that change - essentially the scenario manager first takes the constants as set in the model itself and then overrides them with the settings from the scenario.import BPTK_Pybptk = BPTK_Py.bptk()bptk.register_scenario_manager(scenario_manager)
bptk.register_scenarios(scenario_manager="sddsl_customer_acquisition",scenarios={"base":{},"low_word_of_mouth":{"constants":{"word_of_mouth_success":0.001}},
"high_word_of_mouth":{"constants":{"word_of_mouth_success":0.1}},"interactive_scenario":{}})
bptk.plot_scenarios(scenario_managers=["sddsl_customer_acquisition"],scenarios=["base","low_word_of_mouth","high_word_of_mouth"],equations=["customers"],series_names={"sddsl_customer_acquisition_base_customers":"Base","sddsl_customer_acquisition_low_word_of_mouth_customers":"Low Word of Mouth","sddsl_customer_acquisition_high_word_of_mouth_customers":"High Word of Mouth",})
%matplotlib inlineimport matplotlib.pyplot as pltfrom ipywidgets import interactimport ipywidgets as widgetscustomerTab = widgets.Output()customerAcquisitionTab = widgets.Output()scenariosTab = widgets.Output()
tabs = widgets.Tab(children = [customerTab, customerAcquisitionTab,scenariosTab])tabs.set_title(0, 'Customers')tabs.set_title(1, 'Customer Acquisition')tabs.set_title(2, 'Scenarios')display(tabs)@interact(word_of_mouth_success=widgets.FloatSlider(value=0.01,min=0.001,max=0.1,step=0.001,continuous_update=False,description='Word Of Mouth Success'))
def dashboardWithTabs(word_of_mouth_success):scenario= bptk.get_scenario("sddsl_customer_acquisition","interactive_scenario")scenario.constants["word_of_mouth_success"]=word_of_mouth_successbptk.reset_scenario_cache(scenario_manager="sddsl_customer_acquisition",scenario="interactive_scenario")
with customerTab:
# turn of pyplot's interactive mode to ensure the plot is not created directlyplt.ioff()# clear the widgets output ... otherwise we will end up with a long list of plots, one for each change of settingscustomerTab.clear_output()# create the plot, but don't show it yetbptk.plot_scenarios(scenario_managers=["sddsl_customer_acquisition"],scenarios=["interactive_scenario"],equations=['customers'],title="Customers",freq="M",x_label="Time",y_label="No. of Customers")# show the plotplt.show()# turn interactive mode on againplt.ion()with customerAcquisitionTab:plt.ioff()customerAcquisitionTab.clear_output()bptk.plot_scenarios(scenario_managers=["sddsl_customer_acquisition"],scenarios=["interactive_scenario"],equations=['customer_acquisition'],title="Customer Acquisition",freq="M",x_label="Time",y_label="No. of Customers")plt.show()plt.ion()with scenariosTab:plt.ioff()scenariosTab.clear_output()bptk.plot_scenarios(scenario_managers=["sddsl_customer_acquisition"],scenarios=["base","low_word_of_mouth","high_word_of_mouth","interactive_scenario"],equations=["customers"],series_names={"sddsl_customer_acquisition_base_customers":"Base","sddsl_customer_acquisition_interactive_scenario_customers":"Interactive","sddsl_customer_acquisition_low_word_of_mouth_customers":"Low Word of Mouth","sddsl_customer_acquisition_high_word_of_mouth_customers":"High Word of Mouth",}),plt.show()plt.ion()```
Tab(children=(Output(), Output(), Output()), _titles={'0': 'Customers', '1': 'Customer Acquisition', '2': 'Sce...interactive(children=(FloatSlider(value=0.01, continuous_update=False, description='Word Of Mouth Success', ma...
from BPTK_Py import Modelfrom BPTK_Py import sd_functions as sdfrom BPTK_Py import Agentfrom BPTK_Py import Modelfrom BPTK_Py import Eventfrom BPTK_Py import DataCollectorfrom BPTK_Py import SimultaneousScheduler
method.`act`
class Consumer(Agent):def initialize(self):self.agent_type = "consumer"self.state = "potential"self.register_event_handler(["potential"],"advertising_event",self.handle_advertising_event)self.register_event_handler(["potential"],"word_of_mouth_event",self.handle_word_of_mouth_event)def handle_advertising_event(self,event):if self.is_event_relevant(self.model.advertising_success):self.state="customer"def handle_word_of_mouth_event(self, event):if self.is_event_relevant(self.model.word_of_mouth_success):self.state="customer"def act(self,time,round_no,step_no):# consumers who are customers generate word of mouth eventsif self.state == "customer":self.model.random_events("consumer",
Note that the company agent defined below accesses the propertiesself.contact_rate,lambda agent_id: Event("word_of_mouth_event", self.id, agent_id))
and ``advertising_budget`
`. These properties are defined in the scenarios and can then be accessed "magically" as either agent properties or model properties.consumers_reacher_per _euro
The model itself needs a way of instantiating agents - for this you register agent factories, which return an agent of a particular type. In their simplest form an agent factory is just a lambda function.class Company(Agent):def initialize(self):self.agent_type="company"self.state = "active"def act(self,time,round_no,step_no):self.model.random_events("consumer",self.advertising_budget*self.model.consumers_reached_per_euro,lambda agent_id: Event("advertising_event",self.id, agent_id))
NOTE: Running the agent-based model takes a little time, ca. 3 min on my machine.class CustomerAcquisitionAbm(Model):def instantiate_model(self):self.register_agent_factory("consumer", lambda agent_id,model,properties: Consumer(agent_id, model,properties))self.register_agent_factory("company", lambda agent_id,model, properties: Company(agent_id, model, properties))customer_acquisition_abm=CustomerAcquisitionAbm(1,60,dt=1,name="Customer Acquisition Agent-based Model",scheduler=SimultaneousScheduler(),data_collector=DataCollector())customer_acquisition_abm.instantiate_model()customer_acquisition_abm_config = {"runspecs": {"starttime": 1,"stoptime":60,"dt": 1.0},"properties":{"word_of_mouth_success":{"type":"Double","value":0.01},"advertising_success":{"type":"Double","value":0.1},"consumers_reached_per_euro":{"type":"Integer","value":100}},"agents":[{"name":"company","count":1,"properties":{"advertising_budget":{"type":"Integer","value":100}}},{"name":"consumer","count":60000,"properties":{"contact_rate":{"type":"Integer","value":10}}}]}customer_acquisition_abm.configure(customer_acquisition_abm_config)
customer_acquisition_abm.run()[customer_acquisition_abm.statistics().get(1.0*key) for key in range(1,5)][{'company': {'active': {'count': 1,'advertising_budget': {'total': 100,'max': 100,'min': 100,'mean': 100.0}}},'consumer': {'potential': {'count': 60000,'contact_rate': {'total': 600000, 'max': 10, 'min': 10, 'mean': 10.0}}}},{'company': {'active': {'count': 1,'advertising_budget': {'total': 100,'max': 100,'min': 100,'mean': 100.0}}},'consumer': {'potential': {'count': 58982,'contact_rate': {'total': 589820, 'max': 10, 'min': 10, 'mean': 10.0}},'customer': {'count': 1018,'contact_rate': {'total': 10180, 'max': 10, 'min': 10, 'mean': 10.0}}}},{'company': {'active': {'count': 1,'advertising_budget': {'total': 100,'max': 100,'min': 100,'mean': 100.0}}},'consumer': {'potential': {'count': 57881,'contact_rate': {'total': 578810, 'max': 10, 'min': 10, 'mean': 10.0}},'customer': {'count': 2119,'contact_rate': {'total': 21190, 'max': 10, 'min': 10, 'mean': 10.0}}}},{'company': {'active': {'count': 1,'advertising_budget': {'total': 100,'max': 100,'min': 100,'mean': 100.0}}},'consumer': {'potential': {'count': 56717,'contact_rate': {'total': 567170, 'max': 10, 'min': 10, 'mean': 10.0}},'customer': {'count': 3283,'contact_rate': {'total': 32830, 'max': 10, 'min': 10, 'mean': 10.0}}}}]
import BPTK_Pybptk = BPTK_Py.bptk()customer_acquisition_abm.reset()abm_scenario_manager={"abm_customer_acquisition":{"name":"abm_customer_acquisition","type":"abm","model":customer_acquisition_abm,"scenarios":{"base":{"runspecs": {"starttime": 1,"stoptime":60,"dt": 1.0},"properties":{"word_of_mouth_success":{"type":"Double","value":0.01},"advertising_success":{"type":"Double","value":0.1},"consumers_reached_per_euro":{"type":"Integer","value":100}},"agents":[{"name":"company","count":1,"properties":{"advertising_budget":{"type":"Integer","value":100}}},{"name":"consumer","count":60000,"properties":{"contact_rate":{"type":"Integer","value":10}}}]}}}}bptk.register_scenario_manager(abm_scenario_manager)bptk.plot_scenarios(scenario_managers=["abm_customer_acquisition"],scenarios=["base"],agents=["consumer"],agent_states=["customer"],progress_bar=True)
Output()
from BPTK_Py import Modelfrom BPTK_Py import sd_functions as sdfrom BPTK_Py import Agentfrom BPTK_Py import Modelfrom BPTK_Py import Eventfrom BPTK_Py import DataCollectorfrom BPTK_Py import SimultaneousSchedulerclass Customer(Agent):def initialize(self):self.agent_type = "customer"self.state = "active"
class CustomerAcquisitionSD():def __init__(self,model):self.model = model# stocksself.customers = model.stock("customers")#flowsself.customer_acquisition=model.flow("customer_acquisition")#convertersself.acquisition_through_advertising = model.converter("acquisition_through_advertising")self.acquisition_through_word_of_mouth = model.converter("acquisition_through_word_of_mouth")self.consumers_reached_through_advertising = model.converter("consumers_reached_through_advertising")self.consumers_reached_through_word_of_mouth= model.converter("consumers_reached_through_word_of_mouth")self.market_saturation = model.converter("market_saturation")#constantsself.initial_customers = model.constant("initial_customers")self.target_market= model.constant("target_market")self.advertising_success = model.constant("advertising_success")self.consumers_reached_per_euro = model.constant("consumers_reached_per_ruro")self.advertising_budget = model.constant("advertising_budget")self.word_of_mouth_success = model.constant("word_of_mouth_success")self.contact_rate = model.constant("contact_rate")#equationsself.customers.equation = self.customer_acquisitionself.customer_acquisition.equation=self.acquisition_through_advertising+self.acquisition_through_word_of_mouthself.acquisition_through_advertising.equation = self.advertising_success*self.consumers_reached_through_advertisingself.consumers_reached_through_advertising.equation = self.consumers_reached_per_euro*self.advertising_budget*(1-self.market_saturation)self.market_saturation.equation = self.customers/self.target_marketself.acquisition_through_word_of_mouth.equation = self.word_of_mouth_success*self.consumers_reached_through_word_of_mouthself.consumers_reached_through_word_of_mouth.equation=self.contact_rate*self.customers*(1-self.market_saturation)#initialize modelself.customers.initial_value=self.initial_customersself.initial_customers.equation = 0.0self.target_market.equation = 60000.0self.advertising_success.equation = 0.1self.consumers_reached_per_euro.equation = 1.0self.advertising_budget.equation = 100.0self.word_of_mouth_success.equation = 0.01self.contact_rate.equation = 1.0class CustomerAcquisitionHybrid(Model):def instantiate_model(self):super().instantiate_model()# register agent factoriesself.register_agent_factory("customer", lambda agent_id,model,properties: Customer(agent_id, model,properties))# set up the sd model - keep it in its own class so we can use the SD DSLself.sd_model = CustomerAcquisitionSD(self)def configure(self,config):super().configure(config)## the config sets the model properties, which we need to set the initial values of the sd modelself.sd_model.target_market.equation = self.target_marketself.sd_model.advertising_success.equation = self.advertising_successself.sd_model.consumers_reached_per_euro.equation = self.consumers_reached_per_euroself.sd_model.advertising_budget.equation = self.advertising_budgetself.sd_model.word_of_mouth_success.equation = self.word_of_mouth_successself.sd_model.contact_rate.equation = self.contact_ratedef begin_round(self, time, sim_round, step):# at the beginning of each round we check to see how many customers we should have according to the# SD model and then create the right number of agents.required_num_customers = int(self.evaluate_equation("customers",time))current_num_customers = self.agent_count("customer")agents_needed = required_num_customers-current_num_customersself.create_agents({"name":"customer","count":agents_needed})customer_acquisition_hybrid=CustomerAcquisitionHybrid(1,60,dt=1,name="Customer Acquisition Hybrid",scheduler=SimultaneousScheduler(),data_collector=DataCollector())customer_acquisition_hybrid.instantiate_model()customer_acquisition_hybrid_config = {"runspecs": {"starttime": 1,"stoptime":60,"dt": 1.0},"properties":{"word_of_mouth_success":{"type":"Double","value":0.01},"advertising_success":{"type":"Double","value":0.1},"consumers_reached_per_euro":{"type":"Double","value":100.0},"advertising_budget":{"type":"Double","value":100.0},"contact_rate":{"type":"Double","value":10.0},"target_market":{"type":"Double","value":60000.0}},"agents":[{"name":"customer","count":0}]}customer_acquisition_hybrid.configure(customer_acquisition_hybrid_config)customer_acquisition_hybrid.run()[customer_acquisition_hybrid.statistics().get(1.0*key) for key in range(2,10)][{'customer': {'active': {'count': 1000}}},{'customer': {'active': {'count': 2081}}},{'customer': {'active': {'count': 3247}}},{'customer': {'active': {'count': 4500}}},{'customer': {'active': {'count': 5842}}},{'customer': {'active': {'count': 7272}}},{'customer': {'active': {'count': 8790}}},{'customer': {'active': {'count': 10393}}}]
import BPTK_Pybptk = BPTK_Py.bptk()customer_acquisition_hybrid.reset()hybrid_scenario_manager={"hybrid_customer_acquisition":{"name":"hybrid_customer_acquisition","type":"abm","model":customer_acquisition_hybrid,"scenarios":{"base":{"runspecs": {"starttime": 1,"stoptime":60,"dt": 1.0},"properties":{"word_of_mouth_success":{"type":"Double","value":0.01},"advertising_success":{"type":"Double","value":0.1},"consumers_reached_per_euro":{"type":"Double","value":100.0},"advertising_budget":{"type":"Double","value":100.0},"contact_rate":{"type":"Double","value":10.0},"target_market":{"type":"Double","value":60000.0}},"agents":[{"name":"customer","count":0}]}}}}bptk.register_scenario_manager(hybrid_scenario_manager)bptk.plot_scenarios(scenario_managers=["hybrid_customer_acquisition"],scenarios=["base"],agents=["customer"],agent_states=["active"],progress_bar=True)
Output()
folder.scenarios
{"xmile_customer_acquisition":{"source":"simulation_models/customer_acquisition_xmile.stmx","model":"simulation_models/customer_acquisition_xmile","scenarios":{"base": { },"low_word_of_mouth":{"constants":{"wordOfMouthSuccess":0.001}},"high_word_of_mouth":{"constants":{"wordOfMouthSuccess":0.1}}}}}
import BPTK_Pybptk = BPTK_Py.bptk()
bptk.list_equations(scenario_managers=["xmile_customer_acquisition"],scenarios=[])
Available Equations:
Scenario Manager: xmile_customer_acquisitionScenario: base--------------------------stock: customersflow: customerAcquisitionconverter: acquisitionThroughAdvertisingconverter: acquisitionThroughWordOfMouthconverter: advertisingBudgetconverter: advertisingSuccessconverter: consumersReachedPerEuroconverter: consumersReachedThroughAdvertisingconverter: consumersReachedThroughWordOfMouthconverter: contactRateconverter: initialCustomersconverter: marketSaturationconverter: targetMarketconverter: wordOfMouthSuccessScenario: low_word_of_mouth--------------------------stock: customersflow: customerAcquisitionconverter: acquisitionThroughAdvertisingconverter: acquisitionThroughWordOfMouthconverter: advertisingBudgetconverter: advertisingSuccessconverter: consumersReachedPerEuroconverter: consumersReachedThroughAdvertisingconverter: consumersReachedThroughWordOfMouthconverter: contactRateconverter: initialCustomersconverter: marketSaturationconverter: targetMarketconverter: wordOfMouthSuccessScenario: high_word_of_mouth--------------------------stock: customersflow: customerAcquisitionconverter: acquisitionThroughAdvertisingconverter: acquisitionThroughWordOfMouthconverter: advertisingBudgetconverter: advertisingSuccessconverter: consumersReachedPerEuroconverter: consumersReachedThroughAdvertisingconverter: consumersReachedThroughWordOfMouthconverter: contactRateconverter: initialCustomersconverter: marketSaturationconverter: targetMarketconverter: wordOfMouthSuccess
bptk.plot_scenarios(scenario_managers=["xmile_customer_acquisition"],scenarios=["base","high_word_of_mouth","low_word_of_mouth"],equations=["customers"],series_names={"xmile_customer_acquisition_base_customers":"Base","xmile_customer_acquisition_low_word_of_mouth_customers":"Low Word of Mouth","xmile_customer_acquisition_high_word_of_mouth_customers":"High Word of Mouth",})
Events overview